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Abstract. Process mining is a research domain that enables businesses
to analyse and improve their processes by extracting insights from event
logs. While determining the root causes of, for example, a negative case
outcome can provide valuable insights for business users, only limited
research has been conducted to uncover true causal relations within the
process mining field. Therefore, this paper proposes AITIA-PM, a novel
technique to measure cause-effect relations in event logs based on causal-
ity theory. The AITIA-PM algorithm employs probabilistic temporal
logic to formally yet flexibly define hypotheses and then automatically
tests them for causal relations from data. We demonstrate this by apply-
ing AITIA-PM on a real-life dataset. The case study shows that, after
a well-thought-out hypotheses definition and information extraction, the
AITIA-PM algorithm can be applied on rich event logs, expanding the
possibilities of meaningful root cause analysis in a process mining con-
text.

Keywords: Process Mining · Root Cause Analysis · Probabilistic Tem-
poral Logic · Event Log.

1 Introduction

Process mining is a research domain that enables businesses to analyse and
improve their processes by extracting insights from event logs [1]. The foundation
is the event log, which records the real execution of a business process. It can
then be used for, among other goals, process discovery [2] and conformance
checking [6]. However, merely discovering how a process is actually executed and
where it differs from the normative model might not be sufficient. Insights in,
for example, why an event was triggered or why a trace ended with an exception
can be of more interest to business users, and thus, accurate root cause analyses
(RCA) are desired.

Identifying root causes can be a complex task [17]. Each process involves
many different steps, and for each step many factors can be of influence. Add to
this that many traces in a business process can show unique behaviour, as well as
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influence each other by having to share resources. Previous research has proposed
techniques to conduct RCA in process mining, e.g. [7,10,11], however, there are
clear limitations. First, they often put forward a correlation analysis instead of a
true RCA. However, when a process characteristic is correlated with a particular
undesirable outcome, this does not imply that this characteristic caused the
phenomenon. In that sense, one must acknowledge confounding factors can exist,
which might cause spurious associations to arise [24]. Second, existing RCA
techniques that build upon causality theory impose heavy assumptions on the
underlying data. Think of only being able to handle linear causal relations, for
example.

Against this background, this paper proposes the AITIA-PM algorithm. This
algorithm is a new way of executing an RCA in process mining, inspired by the
work of Kleinberg [13,14]. Not only is AITIA-PM based on causality theory, this
technique does not impose assumptions on the required data, making it more
reliable in the real world. We propose the use of probabilistic temporal logic
(PTL) to formally define hypotheses about causal relations, which offers great
flexibility. Additionally, we explicitly take confounding factors into account. As
such, AITIA-PM is a new addition to the current state-of-the-art of meaningful
RCA in process mining. Our contributions are best summarised as follows:

– We propose a novel method in AITIA-PM, adding a new technique to the
mix for effective root cause analysis in the process mining domain which is
fully based on existing causality theory.

– The demonstration on a real-life event log shows the value of AITIA-PM,
mainly found in the flexibility of PTL when identifying specific causal re-
lations and how statistical significance can be computed. It also shows the
importance of a theoretical foundation regarding the philosophy surrounding
causality, as results are easy to interpret.

The remainder of this paper is structured as follows. Sect. 2 describes the re-
lated work in root cause analysis from a process mining standpoint, after which
Sect. 3 introduces the AITIA-PM algorithm which is employed in the demon-
stration as discussed in Sect. 4. Finally, we conclude our paper in Sect. 5.

2 Related Work

An RCA is not bound to a specific family of techniques. Examples are (i) clas-
sification techniques as seen in, for example, [3,8,10,22,23], and (ii) rule mining
algorithms like association rules [5] and subgroup discovery [19]. Unfortunately,
in most applications, there is too little attention given towards the differentiation
between correlation and causality.

Hompes et al. [11] proposed a graph-based approach resulting in a time series
analysis to detect cause-effect relations by testing for Granger causality [9], thus
explicitly considering causation instead of correlation between features. However,
it is not perfect either. Granger causality, as it is originally defined, cannot
account for instantaneous or nonlinear causal relations, and cannot deal with
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confounding effects either. Also, Granger causality makes strong assumptions on
the underlying data which are rarely met in the real world [15].

Finally, Qafari and van der Aalst have recently published research on struc-
tural equation models for RCA [17] which was later extended with counterfactual
reasoning [18]. One of the foundations here is that the structure of causal re-
lations can be provided by the domain expert if available and, as such, there
can be no discussion about causality or correlation. The counterfactual rea-
soning extension allows the authors to produce recommendations that indicate
how specific cases could have been handled differently to avoid problems in the
future [18]. However, the authors acknowledge that using a machine learning
technique imposes the risk of obtaining wrong or imprecise recommendations, or
even miss out on the correct ones, regardless of the model’s accuracy. Narendra
et al. [16] also show how to answer the what-if questions via structural causal
models and counterfactual reasoning, proving the effectiveness of the methods,
yet they acknowledge it lacks intuitiveness.

The causality measure and complementary algorithm introduced by Klein-
berg [13,14] pays great attention towards determining causality by building on
the philosophical foundations of causality theory [12,21]. To that end, the al-
gorithm is able to detect the genuine causal relations from data separate from
spurious ones. This is achieved by implementing probabilistic temporal logic
(PTL) for defining hypotheses, which are then tested based on probability theory
and statistical significance. Additionally, Kleinberg’s technique explicitly tackles
confounding variables.

3 The AITIA-PM Algorithm

As described in Sect. 2, Kleinberg’s work found its basis in causality theory. The
measure and complementary algorithm allow for extraction of causal relations
from data rather than a predefined model of how a system evolves in terms of
states it is in. AITIA-PM tailors the ideas of Kleinberg to the process mining
field. The following paragraphs describe the necessary background followed by a
step-by-step guide of the algorithm. For more information, we refer the reader
to Kleinberg [13].

3.1 Background

The Concept of Causality In this paper, consistent with the work of Klein-
berg [13], the following properties must hold to establish a causal relationship
between a cause and an effect: (i) the cause must precede the effect in time [12]
and (ii) a cause must raise the probability of the effect [21]. Property (ii) is also
known as the prima facie condition. Several pitfalls must be taken into account,
however.

First of all, there might be causality without raising the probability of the
effect or vice versa. For example, yellow stained fingers and lung cancer can be
the result of a common earlier cause: smoking. Without considering smoking, one
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would observe that having yellow stained fingers would increase the probability
of lung cancer. However, when holding the common cause fixed, that relationship
between the effects would disappear. Controlling for common causes is known
as screening off, or dealing with confounding factors [24].

Second, event logs carry a case notion. However, process instances can influ-
ence each other. Think of resources being shared or scarce materials suddenly
becoming unavailable because the last item was just consumed, thus impacting
how a different case can continue. Therefore, we add another property to AITIA-
PM one must meet, namely that (iii) each case is defined by the events which
can possibly be a cause of the effect within that specific case.

Clearly, unlike the heavy assumptions made in Granger causality which are,
among others, that there is no confounding variable present, causal relations
are linear and time series are stationary [15], our understanding of causality
imposes less restrictions on the input data. The first two properties, as will be
made clear in the following subsections, are also easy to infer from an event log
automatically, making inference practically feasible as well.

Probabilistic Temporal Logic PTL allows reasoning on the likelihood of an
event within a certain time interval. For example: how likely is it that a train
arrives at the station within 2 to 10 minutes. As such, properties should not hold
eventually, as they are bound in time so it can be quantified how likely it will
happen. By allowing to freely define the cause, effect, type of relation between
cause and effect, and the time window, PTL is highly flexible in execution.

AITIA-PM uses PTL as language to define the hypotheses the business user
desires to test for cause-effect relations. Each hypothesis comprises a logical
formula describing both the time bounds as well as the likelihood of a potential
cause c triggering an effect e: c ;≥r,≤s≥p e. This is also called a leads-to formula
where r, s represent the time bounds and p the minimum probability for the cause
triggering the effect in the time window in order for the formula to evaluate to
true. c and e here are state formulas: properties which hold for the system at
a certain point in time. Such a property can be an activity that was executed.
For example, with ¬H and F being not doing homework and failing a test
respectively, ¬H ;

≥1,≤3
≥0.40 F would describe that when a student neglects the

necessary homework, the probability of the student failing a test between 1 and
3 time units would be at least 40%. From the practical viewpoint of AITIA-PM,
the probabilities are calculated from data and do not need to be passed by the
user.

The state formulas for the cause and effect are not limited to contain one
element each. PTL allows for each state formula to be a path formula too. A
path formula can express properties along a path (or trace) in the dataset. For
example, a path formula can be that an activity B must follow activity A in a
trace within 5 time units, like so:

[AF≤5≥p1
B] ;≥r,≤s≥p2

e (1)
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where F represents the path operator Finally, indicating that at some state of
the path the property will hold, and p1 being the probability that B should follow
A within 5 time units. The evaluation of such a path formula in itself is also a
state formula which is true at a certain moment in time for the trace. Having
defined such state and path formulas, one knows which information to extract
from the event log to employ as system states. These system states, along with
their case notions and timestamps, then serve as input for the algorithm.

AITIA-PM uses only a subset of PTL by, for example, neglecting the notion
of time windows. We do so because long-term dependencies in business processes
need to be acknowledged. The interested reader is referred to [13] for more details
about PTL.

3.2 Algorithmic Procedure

AITIA-PM guides the user in detecting meaningful root causes supported by
causal theory. It consists of the following five steps: (i) input data preparation, (ii)
generating causal hypotheses, (iii) testing for prima facie causes, (iv) calculation
of epsilon values, and (v) testing for causal significance.

Step 1 – Input Data Preparation The AITIA-PM algorithm focuses on
system states and how they change over time for each case in the event log. As
such, these are the three required attributes in the input data structure. The
definition of the system states depends on the potential causes and effects the
business user is interested in, and thus, has defined in PTL hypotheses. For
example, let’s assume that we know that when resource x (Rx) is involved in
a case, the case will result in an error (E). In other words, you define your
hypothesis as

Rx ; E. (2)

Remember that the probability of this leads-to formula actually occurring is
inferred from data in a later stage. Given this hypothesis, the data analyst knows
which system states to extract from or enrich the event log with: the resources
involved with the case at each time unit, and whether or not the error E was
registered. As such, the input data consists of these three columns: the case ID,
the system state, and the timestamp.

One can also opt to convert all timestamps in the data set to a specific time
unit, where the first observation in the event log would start at time unit 0. This
would easily allow the reintroduction of time windows in PTL leads-to formulas.

Step 2 – Generating Hypotheses Having defined the system states, one can
now generate the different hypotheses: which causes might have a significant
impact on the likelihood of the effect triggering? AITIA-PM takes a list of plau-
sible causes and effects to combine them into the complete set of hypotheses:
does cause c trigger effect e within the time bounds [r, s]? All combinations are
considered a hypothesis except where c = e.
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In this step, it is important to consider adding all system states as a possible
cause for the effect of interest. This way, you also check for the other states as
potential confounding factors, even though you might not expect them to have
a causal relationship with the effect. In the example of Rx triggering an error E,
a hypothesis will be generated for every resource Rr with r ∈ R to trigger the
effect E.

Step 3 – Testing for Prima Facie Causes The hypotheses generated be-
fore contain all combinations of cause-effect we are interested in. However, they
probably also describe causal relations which might not meet the prima facie
condition. In order for a cause to be a prima facie cause of an effect, it must
satisfy the following three conditions:

1. the cause must have occurred before the effect,

2. the cause must increase the probability of the effect occurring, and

3. the cause and effect when checking the above requirements must belong to
the same case in the event log.

With the timestamps and case IDs provided along with the system states, it
is relatively straightforward to determine whether or not a cause is a prima facie
cause for an effect from the event log. Only the hypotheses fulfilling the above
requirements are considered to be genuine potential causes for the effect.

In order to accomplish this prima facie test, the following pieces of informa-
tion are required: (i) when and for which case was the cause observed, (ii) when
and for which case was the effect observed, and (iii) how often did the effect
occur after the cause given they both belong to the same case. The prima facie
condition is then probabilistically checked from the data as follows:

P (e|c) > P (e) (3)

where

P (e) =
#e

#events
(4)

and

P (e|c) =
#(e ∧ c)

#c
. (5)

It is important to remember that #(e ∧ c) takes the timing of events and case
ID into account. This computation therefore checks if there exists a c before e
within the same case, and if not, the hypothesis is automatically classified as
false. For example, resource Ry is only involved after the case already produced
error E. As such, P (E|Ry) = 0, meaning that Ry cannot be a prima facie cause
of E.
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Step 4 – Calculation of Epsilon Values Having determined all prima facie
causes of the effect of interest, we now want to separate the genuine causes from
the spurious ones. To that end, we use epsilon values as a measure of causality
that can be statistically tested. The measure εavg, introduced by Kleinberg [13],
describes the average change of probability of effect e given the presence of cause
c while keeping another factor x constant. This factor x is also a prima facie cause
of e which is deemed to be present. As such, for each other factor x, an εx is
calculated after which the average describes the impact of c on e.

Formally, the measure is then expressed as follows:

εavg(c, e) =

∑
x∈X\c εx(c, e)

|X\c|
(6)

where X represents the set of prima facie factors of e and

εx(c, e) = P (e|c ∧ x)− P (e|¬c ∧ x). (7)

Determining these probabilities correctly requires that the case notion is identical
for pairs of e, c and x. While keeping x constant, the probability change of e
is of interest when the cause c is present or not. Property (iii) of causality in
AITIA-PM dictates that all information regarding causal relationships within a
case is available in that same case. As such, the case ID must be identical for c
and x when counting the occurrences of (c ∧ x) and (¬c ∧ x).

The probabilities are defined as follows:

P (e|c ∧ x) =
#(e ∧ c ∧ x)

#(c ∧ x)
(8)

and

P (e|¬c ∧ x) =
#(e ∧ ¬c ∧ x)

#(¬c ∧ x)
(9)

where e must occur at a later time than (c ∧ x) or (¬c ∧ x). As soon as this
information is available, it is a simple matter of counting how often an effect
does or does not take place in the related time windows. For each hypothesis
that passed the prima facie test, an εavg is obtained. These average epsilons are
the foundation of the statistical test performed next.

Step 5 – Determining Causal Significance Up until this point, the epsilon
values are computed, which express the average probability changes of the effect
e occurring given the presence or absence of a prima facie cause c. A statistical
test can then separate the genuine causes from the spurious ones. To that end,
the AITIA-PM algorithm uses the concept of false discovery rates (FDR) as
implemented by the R-package fdrtool [20]. Saving the technical details, the
procedure is as follows:

1. start by calculating z-values: z = (εavg − µ)/σ where µ and σ represent the
average and the standard deviation of the set of εavg, respectively;
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2. Next, fit a mixture model to the observed data, the z-values;
3. Determine the FDR of z.

The causal relations where the FDR is below a certain threshold are deemed
significant causes. This threshold is chosen freely by the business user depending
on how acceptable a false discovery is. For example, with a threshold of 0.01,
one would expect 1% of causes to be significant.

4 Demonstration

In this section, we demonstrate how AITIA-PM learns causes for process delay by
applying it on a real-life dataset, namely the “receipt phase of an environmental
permit application process (WABO) CoSeLoG project” event log [4] 3. This
event log contains the receiving phase execution records of the building permit
application process in an undisclosed Dutch municipality. It consists of 1.434
traces and 8.577 events spread over 27 activity classes.

Similar to Qafari and van der Aalst [17], we consider as effect the delay ob-
served in some cases. This delay threshold is set to 3% of the maximum duration
of all traces. As the maximum duration is 275.8813 days, the threshold is equal
to 8.2764 days, or 198.6345 hours. As the average duration of a trace is about
2% of the maximum duration, the threshold of 3% seems appropriate. We add
a new event “Case Delayed” to each case that exceeds the threshold duration
at the moment the case reaches a duration of 198.6345 hours. This ensures that
events occurring after that moment in time can no longer be considered a cause
for the delay in that case. As Qafari and van der Aalst [17], we investigate if the
combination of a specific activity Ai performed by a specific resource Rj causes
process delay.

Remember the five steps of AITIA-PM: (1) data preparation, (2) generating
causal hypotheses, (3) testing for prima facie causes, (4) calculation of epsilon
values, and (5) testing for causal significance. Steps 1 and 2 both relate to the
PTL hypothesis definition. In our example, an initial set of 397 hypotheses is
constructed as there are 397 distinct activity-resource pairs in the event log. Each
hypothesis for a specific activity Ai and a specific resource Rj can be described
with PTL as follows:

Ai ∧Rj ; delay (10)

Consequently, the system states to extract from the event log are all the activities
per case with the associated resource that executed them. The first ten rows of
the input dataset are shown in Table 1, along with the first observation of process
delay.

All initial 397 hypotheses were tested for the prima facie condition (step
3), and 159 of these passed the test, meaning they occurred before the delay

3 The source code and data to reproduce the results of the demonstration are available
at https://github.com/gregvanhoudt/AITIA-PM.

https://github.com/gregvanhoudt/AITIA-PM
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Case ID System State Time Unit

case-891 Confirmation of receipt - Resource26 0.0000000
case-891 T02 Check confirmation of receipt - Resource26 0.0131450
case-891 T03 Adjust confirmation of receipt - Resource26 0.1759917
case-891 T02 Check confirmation of receipt - Resource26 0.1835817
case-891 T03 Adjust confirmation of receipt - Resource26 0.1894819

case-3756 Confirmation of receipt - Resource02 71.2025831
case-3756 T06 Determine necessity of stop advice - Resource02 71.3695931
case-3756 T02 Check confirmation of receipt - Resource24 72.1805186
case-3756 T07-1 Draft intern advice aspect 1 - Resource24 72.1995269
case-3756 T06 Determine necessity of stop advice - Resource02 72.3097125

... ... ...

case-891 Case Delayed 198.6345127
... ... ...

Table 1. Input data for Scenario 1.

was observed and they increase the probability of the case being delayed. After
computation of the test statistics and setting the FDR threshold to 5%, we
obtain output as shown in Table 2.

cause epsilon z fdr

T02 Check confirmation of receipt - Resource24 0.1871651 7.444724 0.0000000
T04 Determine confirmation of receipt - Resource10 0.1202274 4.364844 0.0258531
T05 Print and send confirmation of receipt - admin1 0.0736255 2.220631 0.0258531

Table 2. AITIA-PM output for scenario 1.

In summary, AITIA-PM detects that, with the FDR threshold set to 0.05,
three of the 159 hypotheses are genuine. It appears that the probability of the
case being delayed significantly increases when specifically (i) “T02 Check confir-
mation of receipt” is executed by Resource24, (ii)“T04 Determine confirmation
of receipt” is executed by Resource10, or (iii) “T05 Print and send confirmation
of receipt -’ is executed by Admin1. We can be most sure of (i), as that FDR
value is equal to zero and its epsilon value is also the highest.

This epsilon is also easy to interpret. In the case of our first result, this
interpretation is as follows: the average increase in probability of the effect, the
case delay, occurring when the activity “T02 Check confirmation of receipt”
is executed by Resource24 while controlling for alternative causal explanations
equals 18.71651 percentage points.
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5 Conclusion

This paper introduced a novel root cause analysis method in process mining
named AITIA-PM. It complements the state-of-the-art with respect to RCA
techniques as it follows causality theory. Unlike already established techniques,
AITIA-PM imposes realistic assumptions regarding the required data. This makes
it a very adaptable technique to the desires of a business user. Additionally, by
taking a probabilistic approach and averaging out the probability changes, the
technique can easily tackle confounding factors which could cause spurious as-
sociations. This makes it a strong novel option for RCA.

The demonstration shows that AITIA-PM can flexibly tap into the vast
amount of information an event log possesses. PTL allows very diverse hypothe-
ses to be tested which makes AITIA-PM both powerful but also expressive. Due
to PTL it is easy to define both simple as well as more complex hypotheses with
respect to cause-effect relations in a formal manner. Finally, we have shown the
strength of AITIA-PM with respect to interpretability of results.

Several future research challenges are identified in this article. First, a domain
expert is required to provide the necessary states the process can semantically
be in. Automatic hypothesis generation could bring insights the domain expert
might not even consider. Second, state formulas in their current form are binary
as they evaluate to true or false. Future work could bring an extension which
supports continuous variables.
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